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Spectral analysis with short data batches 

C J Oliver 
Royal Signals and Radar Establishment, Malvern, Worcs, WR14 3PS, UK 

Received 15 March 1978, in final form 17 August 1978 

Abstract. This paper studies the limiting accuracy with which power spectra and the values 
of spectral parameters for random signals can be achieved from short batches of data. 
Initially, general expressions for arbitrary data are derived; these are then restricted for 
simplicity to wide-band signals. In addition, comparison is made with computer simulation 
for two well defined models, namely, photodetection of light of constant intensity and 
heterodyne photodetection of narrow-band Gaussian-Lorentzian light. It is shown that 
there is no analytical difference between operation in time or frequency space for batch 
data, and also that long data sets can be analysed at least as well, in terms of the accuracy 
with which spectral parameters can be determined by fitting, by averaging over many short 
batches as by processing the set as a whole. 

1. Introduction 

In this paper we shall be concerned with the estimation of the spectral properties of 
random signals from truncated sets of data. For random signals the most meaningful 
spectral estimators are the autocorrelation function (time space) and its Fourier 
transform pair, the power spectrum (frequency space). The fact that only a finite record 
of the signal is available for spectral analysis results in a discrepancy between the 
observed spectral estimator and its true, infinite-duration, value. Much effort has been 
concentrated in the past on the choice of suitable window functions to attempt to 
‘restore’ the true spectral shape by reducing side lobes, etc. Of course these techniques, 
while they may give a better appearance to the observed spectral estimator, have 
actually introduced correlations in the data corresponding to the impulse function of the 
spectral weighting filter adopted. Where spectra are sufficiently complicated it is often 
useful to obtain such a display, in spite of its shortcomings, since it enables one to study 
the features of the spectrum. However, there are many applications where the spectrum 
is essentially very simple and can be characterised by a suitable model. In  these cases 
there is no advantage, indeed the reverse, in weighting the original data. The best 
results will be obtained by fitting the observed spectral estimators to the theoretical 
form corresponding to the model of the process with truncation effects included. In this 
type of analysis one is not basically concerned with the form of the spectral estimator per 
se, but with extracting a few simple parameters, such as peak position and linewidth, 
which give information about the process under study. This type of analysis forms the 
basis of nearly all photon-correlation spectroscopy of optical signals, for example, This 
paper will concentrate on this latter type of spectral analysis and will indeed be applied 
specifically as an example to the extraction of spectral properties in photon-correlation 
spectroscopy. It differs, therefore, in three respects from previous papers dealing 
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5 92 C J Oliver  

specifically with the accuracy with which spectral parameters can be determined in 
photon-correlation spectroscopy (Jakeman et a1 1970,197 1 b, Degiorgio and Lastovka 
1971, Kelly 1971, Saleh and Cardoso 1973, Hughes et  a1 1973, Jakeman 1972, 1974, 
Oliver 1974, 1978; the last three references in particular serve as reviews of the field). 
Firstly, general results are presented which are subsequently applied to the specific case 
of photon-correlation spectroscopy as an example. Secondly, a comparison of spectral 
analysis in time and frequency spaces is given rather than analysis merely in time space. 
Thirdly, the effect of analysing short batches of data is considered and subsequently 
compared with the use of long data sets as described previously. 

It is important to compare the errors that are obtained in the spectral estimators and 
fitted parameters when operating in either delay-time or frequency space, since 
instrumentation is available with acceptable performance in both domains. In time 
space the autocorrelator, particularly in its digital implementation (Foord et  af 1969, 
1970) enables parallel-channel, real-time processing at bandwidths up to about 
10MHz. In frequency space the discrete Fourier transform (DFT) could now be 
performed at similar speeds on dedicated computers; alternatively an implementation 
of the chirp Z transform (CZT) using acoustic surface wave technology (Butler 1977) 
offers comparable bandwidth with analog signals. Another possibility in frequency 
space is the bank of filters. All these instruments are parallel-channel devices in that 
many frequency or time-delay components are processed simultaneously. For the sake 
of comparison we shall also assume that one can actually implement ideal processing 
with no dynamic range, bandwidth or linearity restrictions in either domain. 

Sections 2-5 of this paper concentrate on the extraction of the maximum amount of 
information from a set of N real, discrete data points (x(0) . . . x ( N  - 1)). Operation in 
both frequency and time spaces is considered. Section 6 addresses the comparison of 
the performance that can be achieved by averaging over many ( M / N )  short batches of 
length N with that obtained by continuous processing with a long data set of duration 
M(>>N) samples. The digital autocorrelator and the filter bank are generally operated 
in this latter mode, whereas the DFT and the CZT (and, in some applications, the 
autocorrelator) are essentially batch processors of the former type, 

Let us now discuss the different spectral analysis methods that can be applied to a 
batch of data of length N. From the initial data (A) one can proceed either in delay-time 
space by constructing an estimate of the autocorrelation function (B) or one can 
construct the periodogram by taking the square of the modulus of the DFT of the signal 
data (D). From the autocorrelation function estimate (B) one could transfer from time 
to frequency space by taking the Fourier transform to obtain a power spectrum 
estimator (C). In 0 2 we will compare different power spectrum estimators obtained by 
the route ABC with the periodogram obtained by the route AD for any set of data x ( 0 )  
to x ( N  - 1). Having chosen suitable spectral estimators in time and frequency space we 
next derive their means and variances in § 3.1. For simplicity we consider only 
wide-band signals such that the data in  neighbouring samples are uncorrelated. These 
results are then compared with simulation for the specific case of heterodyne photo- 
detection of Gaussian-Lorentzian light in § 3.2. This situation is well understood both 
theoretically and experimentally (Jakeman et  ai 1971a). In addition a full analysis, 
including the simulation technique, for long data sets has been described in detail in 
Oliver (1978). 

After comparing the properties of the different spectral estimators (B, C and D) in 
§ 3 we next go on to consider the extraction of spectral parameters by fitting the 
estimators to the model which describes the process. Simulation and theory for 
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autocorrelation function analysis have previously been compared in some detail for 
long data sets with the same optical heterodyne detection conditions (Oliver 1978). In 
the present paper we shall be comparing the results of simulation as different spectral 
estimators are employed; detailed theoretical comparison is not attempted. Before 
attempting to fit the estimators one must first consider whether it is possible to 
normalise the data so as to reduce the relative fluctuations in the spectral estimator 
coefficients. This has been discussed previously for photodetection in Jakeman et a1 
(1970, 1971b), Hughes eta1 (1973), Koppel(l974) and Oliver (1974, 1978). Here we 
consider first wide-band signals of arbitrary statistics before making detailed 
comparison for the special case of photodetection of a constant light intensity. Normal- 
isation of the autocorrelation function is considered in §4 .1  with the means and 
variances derived in 0 4.1.1 and compared with simulation in § 4.1.2. The equivalent 
treatment for the periodogram is given in § 4.2. The properties of the spectral 
estimators are then summarised in § 4.3. 

In many situations one is not concerned primarily with the spectrum itself but with 
particular information contained in the spectrum, such as peak positions and widths. In 
cases where the process giving rise to the spectrum is well understood we have a model 
which can be used to fit the spectrum to obtain values of specific spectral parameters. 
For heterodyne photodetection of Gaussian-Lorentzian light we have taken a two- 
parameter model based on a frequency shift w o  and linewidth r. Thus the final step in 
extracting these parameters is to perform a least-squares fitting procedure on the 
spectral estimates. One then arrives at estimates for wo and r via the three different 
routes AB, ABC, AD. The final comparison for short data batches, made using 
simulation as before, is of the relative accuracy of these parrameters determined 
through the different analysis methods as described in § 5. 

Having compared the use of frequency and time domains in spectral analysis in 
§ §  2-5 we next (0  6) go on to consider the situation where the data are available as a long 
string of samples M ( M  >> N ) .  Those processing options which use batch processing will 
take a batch of data of lengths N (A) and construct either the autocorrelation function 
estimator (B) or the periodogram (C). These estimators can then be normalised, 
summed and averaged over M / N  batches giving new spectral estimators D and E 
respectively. Continuous-operation devices take the long data set (A’) and construct, 
for example, the autocorrelation function estimator for N delay coefficients (F). Finally 
these three spectral estimators can be fitted to the specific model, and the relative 
accuracy of the spectral parameters by the three routes (ABD, ACE, A’F) compared. 

In this paper, therefore, we proceed on three levels. Firstly there are completely 
general results for all types of signal; secondly there are results which apply specifically 
to wide-band signals; and thirdly there are results which relate to the particular model 
chosen for comparison purposes. 

2. Spectral estimators 

As we have seen, one method of describing the spectral properties of a random signal is 
via its autocorrelation function. Following equation (1 1.19) of Oppenheim and Schafer 
(1975), this may be defined as 

1 N - l - l k j  

R ( k ) = -  x ( j ) x * ( j + k ) .  
N t = O  



5 94 C J Oliver 

For real data x *  = x and the function is symmetric about k = 0 with / k /  G N - 1. If we 
wish to transfer to frequency space, the discrete Fourier transform of the autocor- 
relation function is given by 

N - 1  2 N - l N - 1 - k  1 N-1  

S " ' ( w ) =  R(k)exp(- i f lk)=-  x ( j ) x ( j + k ) c o s ( f l k ) - G  1 x2(j)  
k = - N + I  N k = O  j = o  J = O  

where 0 = UT, w being the angular frequency and T the separation of the samples. 

function x(r), the power spectrum can be defined by 
Alternatively one may proceed directly into frequency space. For a continuous 

S ( w ) =  lim - x(t)  exp(-iwt) d t  (3) 

where F is the duration of the data. For a batch of N discrete samples of the real 
variable x ( j ) ,  where j refers to a particular sample, an equivalent power spectral 
estimator could be defined by 

When w = 2.1rl/NT this estimator is known as the 'periodogram' of the data as shown in 
equation (11.25) of Oppenheim and Schafer (1975). Expanding equation (4) and 
rearranging we obtain 

The equivalence of the spectral estimator S ' " ( w ) ,  obtained from the autocorrelation 
function as in equation ( 2 ) ,  with the periodogram defined in equations (4) and (5) is the 
form of the Wiener-Khinchin relation for finite sets of discrete samples of a random 
ergodic signal. 

Thus the two spectral estimators in frequency space, obtained by routes ABC and 
AD, are identical when these particular definitions are adopted. Since the final 
accuracy with which the spectral parameters can be obtained through fitting C and D 
must be identical, one would also expect fitting the autocorrelation function, B, to give 
the same accuracy, except for differences in the weighting applied to the parameters 
when fitting in the two spaces. This would imply that one's choice of method should be 
determined only by engineering considerations, since there is no appreciable theoreti- 
cal difference. 

On proceeding via the autocorrelation function, the power spectrum estimator 
S " ' ( w )  is not the only reasonable one to adopt. Since the autocorrelation function is 
reflected about zero delay, one can ignore negative values of k and the imaginary term 
in the Fourier transform. The resultant power spectrum estimator will then be given by 

This estimator is equal to half the periodogram plus a flat background term correspond- 
ing to the estimator for the mean-square value of the data. This background term is also 
encountered if the original value of the autocorrelation function at zero delay is 
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unknown and taken to be zero in the Fourier transform. In this case equation ( 5 )  would 
be modified so that 

where w = 21rl/NT, while equation ( 6 )  would become 

For each of the spectral estimators S"'(w) ,  S'3'(w) and S'4 ' (w) ,  one has the same 
spectral shape as the periodogram but with different, though related, flat background 
contributions. If the estimator for the mean-square value of the data is independently 
measured, this background introduces no problem. However, if it is unknown, one has 
either to include a further variable in any least-squares fitting routine, which reduces the 
accuracy with which the parameters can be obtained, or to find some other method of 
removing the background, as will be discussed in § 4.2. 

A fifth type of power spectrum estimator which could be derived from the autocor- 
relation function would be to reflect the autocorrelation function about the zero delay 
and then take the full complex Fourier transfor, i.e. ignoring the known phase of the 
autocorrelation function. In this case the spectral estimator would be defined similarly 
to equation ( 5 )  above, giving 

Expanding in terms of the original data we obtain 

which, in turn, as in equation (4), is also equal to 

This spectral estimator contains terms in the fourth power of the data which are of the 
wrong dimensions for a power spectrum. Also its detailed form is not simply related to 
any previous estimator. The dimensions could be corrected by taking the square root of 
this estimator, though the shape will still not correspond to the periodogram. While this 
last estimator may not be suitable as a means of representing the power spectrum or, in 
particular, when used to measure linewidth, this does not preclude its usefulness as a 
means of determining the mean frequency. It may even offer advantages in this respect, 
as has been demonstrated in simulation work for photodetection of a sinusoidal 
intensity (Pike 1977). The author compared the periodogram of a set of data (his figure 
16) with the complex Fourier transform of the autocorrelation function followed by 
taking the square of the modulus as in equation (1 1) above (his figure 6). This latter is a 
noticeably smoother spectral estimator which enabled the mean frequency to be 
determined with smaller statistical fluctuations. However, the shape at low frequencies 
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is significantly different from that of the periodogram. This result may indicate that one 
should choose one’s spectral estimator in such a way as to minimise the errors in the 
particular parameter of interest; this will obviously differ from case to case. 

3. Properties of the spectral estimator 

Having chosen a consistent pair of spectral estimators, which we shall take as defined by 
equation (1) for the autocorrelation function and by equation (4) for the power 
spectrum (the periodogram), we next investigate their properties. It is necessary to 
establish whether there is any bias in each estimator, i.e. the extent to which the 
ensemble average of the estimator differs from its true value, and also to determine 
whether the estimators are consistent, i.e. whether the variance tends to zero as the 
number of samples increases without limit. We require, therefore, to derive the mean 
and variance of the spectral estimators. Initially we shall derive expressions for these 
quantities for arbitrary signal x ( j ) .  Subsequently this will be simplified to consider 
wide-band signals. In order to make comparison with simulation we shall take two 
specific cases. Firstly we shall consider photodetection of a constant-intensity light 
source, which allows detailed comparison. Secondly we shall consider heterodyne 
photodetection of narrow-band Gaussian-Lorentzian light. Here we shall use the exact 
theory for the mean values of the estimators, but only the theory for the weak-signal 
limit for the variances. 

3.1. Theoretical predictions 

Derivation of the mean and variance of the autocorrelation function has already been 
described for the case when the total number of samples is much greater than the 
number of delay coefficients calculated, i.e. N >> k (Jakeman et a1 1970, 1971b, Oliver 
1978). With short data batches, however, we are in the region N - k,  so that end effects, 
which could be ignored in the previous work, dominate. 

Provided that the variable x is stationary and ergodic, the ensemble average of the 
autocorrelation function estimator defined in equation (1) is given by 

where the presence of a ‘hat’ denotes an estimator, and its absence the true value. This 
estimator is biased by an amount proportional to k /N.  A related definition of the 
autocorrelation function estimator which would remove this bias would be (equation 
(1 1.17) of Oppenheim and Schafer) 

However, taking the DIT of this autocorrelation function estimator would not yield the 
periodogram. Therefore, if we wish to  perform analysis in time space, it may be 
advantageous to use the unbiased estimator for the autocorrelation function defined in 
equation (13). If, however, we wish to proceed via the autocorrelation function to the 
periodogram, the definition of equation (1) should be retained. Of course, in the limit as 
N tends to infinity but k remains small, both estimators are equivalent, since equation 
(1 2) shows that the original estimator chosen is asymptotically unbiased. 
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Adopting the second definition of the autocorrelation function estimator, the 
ensemble average is given by 

since 
N - 1 - k  

/ = 0  
1 l = N - k  

as desired, and the mean-square value is given by 

If we separate out the special cases 1 = j ,  1 = j + k, 1 = j - k we obtain 

N -1 -2 k 

( x 2 ( j ) x 2 ( j +  k))+2 2 ( x ( j ) x 2 (  j +  k ) x ( j  +2k))  
/ = 0  / = o  

+ 2- N T-k (x ( j ) x  ( j + k )x (1 )x  ( I  + k ))) 
j=o  i # J  

# i + k  
# I - k  
= O  

for k S ( N -  1)/2. In the last term of equation (16) there is a further limitation on the 
choice of 1 and j such that 1 + j s 2(N - 1 - k), so that j and 1 both lie within the required 
bounds simultaneously. For k 3 N/2 one obtains the simpler expression 

Combining equations (14) with (16) or  (17) the variance can be calculated. This will 
depend on the detailed properties of x which determine any factorisation that can be 
applied. 

If we next make the equivalent derivation for the periodogram, as defined in 
equation (4), the mean value will be given by 

which is unbiased, where o = (2.rr/NT) x integer and R = UT. Separating into diagonal 
and off -diagonal terms this becomes 

= O  

Similarly the mean-square value is given by 

1 N-1 

N i.k.1.m 
( P 2 ( w ) )  =z 1 (x(j)x(k)x(l)x(m)) exp[-iR(j-k+l-m)].  (20) 

= O  
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Separating out the special cases as before when two or more samples are identical, we 
obtain 

= o  # /  
= O  

= O  f /  # k  
= O  # j  

= O  

Hence the variance can be evaluated which will depend on the properties of x. Let us 
now consider the three specific cases mentioned previously. 

3.1.1. Wide-band signals. For wide-band signals the data in different sample times are 
uncorrelated so that the x ’ s  will factorise. Thus equations (14), (16) and (17) for the 
mean and mean-square values of the autocorrelation function estimator will yield 

(md) = (4’ (22) 

var & ( k )  = ( ( x ~ ) ~  - (x)~) / (N - k )  

for the mean value and 

(23) 

when k 3 N/2 with an additional term 

+ [2(N - 2k) / (N - ~C)~](X)’  var x 

when k C (N - 1)/2 for the variance. This derivation uses the properties that 
N - l - k  N - l - k  1 l = ( N - k ) ( N - k - l ) ,  1 + j C 2 ( N  - 1 - k) 

j = O  I # /  
=O 

and 
N - 1 - 2 k N - l - k  N - l - k  N - l - k  N - l - k  N - l - k  

1 1 1 = c  1 1 - 1 1 - 2 1 ,  
/ = 0  / = 0  / = O  l f j  / = o  l = O  

# / + k  
# j - k  
= O  

= (N -k)’- (N -k ) -2 (N -2k).  

From equations (22) and (23) it is apparent that, for wide-band signals, the 
autocorrelation function estimator is both unbiased and consistent. In general, when it 
is not possible to factorise the terms in equations (16) and (17) as was done here, there 
will be terms of order unity remaining in the expression for the variance in addition to 
those of order l / ( N - k )  given here. Under these conditions, when the signal in  
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neighbouring samples is correlated, the autocorrelation function estimator will not be 
consistent, therefore. 

Making the same factorisation in equations (19) and (21) we find that the mean and 
variance of the periodogram are given by 

( $ ( U ) )  = (x’) - (x’) = var x (24) 

and 

var &U)  = (var x)’ +N-’((x4) -4(x)(x3) - 3(x2)’ + 12(x)’(x2) - 6 ( ~ ) ~ )  

since 

(25) 

N - l  N-1 ’v-1 N-1 N - 1  

j = O  k f l  I = O  k t j  I t k  
= O  = O  # j  

= O  

1 1 exp[-iCl(j-k)]=-N, 1 1 1 1 = N 3 - 3 N 2 + 2 N  

N-1 N - 1  N-1 .v-1 N-1 N-1 

1 = O  k f l  i f k  j = O  k f j  i f k  
exp[-ill(k-1)]=-N2+2N, 1 1 exp[-iCl(2j-k-l)]=2N 

=o # I  
= O  

= O  # I  
= O  

and 
N-1 N - 1  N-I N - 1  1 1 1 e x p [ - i C l ( j - k + 1 - m ) ] = 2 N 2 - 6 N .  
I = O  k # l  I f k  m f i  

= O  # I  f k  
= O  # I  

= O  

Thus the periodogram is unbiased but is not a consistent estimator for the power 
spectrum even for wide-band signals, since the dominant term in the variance is 
independent of N. However, this does not imply that there is any difference in the 
spectral information contained in the periodogram (which is not consistent) and the 
autocorrelation function estimator (which is consistent) since the estimators are related 
by a linear process (the Fourier transform). 

A similar result to equation (25) for wide-band random signals has been given by 
Hannan (1960) and Brillinger and Rosenblatt (1967). If, in addition, the probability 
distribution of x is Gaussian, i.e. white Gaussian noise, then the term in order 1,” 
reduces to zero (Oppenheim and Schafer 1975). In general it will not be possible to 
make the factorisation used in deriving the expressions for both mean and variance 
given in equations (24) and (25). Jenkins and Watts (1968) considered non-white 
Gaussian signals, i.e. when the probability distribution of x is Gaussian but the values of 
x are correlated. The mean value of the periodogram is no longer equal to the variance 
of the data, and the dominant term in the variance was shown to be given by 

var & U )  = < > *. (26) 
This is a more general case than white Gaussian noise, which it includes as a special case 
since equation (24) would then hold. 

3.1.2. Photodetection of constant intensity. If we wish to make comparison between 
theory and simulation for the specific case of photodetection of a constant-intensity 
light source, the variable x now corresponds to the number of photodetections n 
occurring during the sample of duration 7’. For a constant intensity these properties are 
well known, the probability distribution of n being Poissonian (Mandel 1959). Since 
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the number of photodetections in each sample time is independent, the expressions for 
wide-band signals also apply to this case. Hence, for the autocorrelation function 
estimator, 

and 
v a r R i k ) = ( n ) ’ ( l + 2 ( n ) ) / ( ~ - k )  

when k 2 N/2. For k 6 ( N  - 1)/2 equation (28) contains the additional term 

+ [ 2 ( ~  - 2 k ) / ( ~  - k ~ ’ I ( n ) ~ .  

( P ( w ) )  = ( n )  

varP(w)=(n)*+(n) /N.  

Similarly for the periodogram 

and 

3.1.3. Heterodyne photodetection of narrow-band Gaussian-Lorentzian light. AS has 
already been indicated, analytic derivation of the variance of the spectral estimators 
when the data in neighbouring samples are correlated is too cumbersome to be 
worthwhile, In this section, therefore, we shall derive exact expressions for the mean 
values of the spectral estimators, but only approximate values for the variances. 

The true autocorrelation function for photodetection will be given by 

R ( k )  = ( n  ( 0 ) n  ( k ) )  
for stationary, ergodic signals. For heterodyne detection of Gaussian-Lorentzian light 
this yields 

~ ( k )  = (tio + E,)’ + 2ii0n, COS  wok^) exp(-lrkTI) + n,Z 
x exp(-12rkTI) + (tio + n,)8k,o (31) 

where r is the linewidth, wo is the frequency shift, and we have replaced ensemble 
averages ( n )  with time averages ri so that the mean signal and local oscillator counts per 
sample time are given by ri, and ri0 respectively. The normalised version of the intensity 
correlation function for heterodyne detection was previously given by Jakeman (1972, 
1974). The autocorrelation function estimator in equation (13) has this mean value. In 
order to derive the variance of this estimator we shall follow Jakeman (1972) in 
assuming that we are in the weak-signal limit (fisc< l ) ,  so that the statistical fluctuations 
are dominated by the shot noise in the local oscillator. The number of photodetections 
in neighbouring samples is then essentially uncorrelated so that the wide-band theory is 
again applicable. The variance is then as given in equation (28) with ( n )  replaced by Eo, 

From equations (2) and ( 5 )  the periodogram can be derived by taking the DFT of the 
autocorrelation function in equation (l), which is related to R ( k )  as shown in equation 
(12). Substituting into equation ( 5 ) ,  therefore, the mean value of the periodogram for 
heterodyne photodetection of narrow-band Gaussian-Lorentzian light can be shown to 
be given by 
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Performing the transformation one obtains 

1 - e-" cos n 
1 - 2e-2y cos R + e-4y 

+ 2fi: + fi,(1 -E,) + (E,+ f i , )2N8(w) 

e-2y cos R, - 2e-' +cos R, e-2y cos nd - 2e-? + cos n d  

(e-2y - 2e-' cos a,+ 112 (e-2v - 2e-? cos Rd + 112 
+ 1 

- - [ 2ii,ri, e-'( 
N 

where R = UT, R, = (w + wo)T,  Rd = ( w  - w0)T  and y = TT. The variance of the 
periodogram, using the same simplifying assumption as before, is then obtained by 
substituting E, for ( n )  in equation (30). 

3.2. Comparison of simulation with theory 

Having derived the relevant theoretical expressions for the means and variances of the 
spectral estimators for the two specific cases of photodetection of constant intensity and 
heterodyne photodetection of narrow-band Gaussian-Lorentzian light, let us now 
compare these results with simulation. The simulation method was first described in 
Hughes et a1 (1973), where it was applied to direct detection. In Oliver (1978) it was 
then extended to cover heterodyne detection, which is the form in which it will be used 
in the present paper. 

Initially let us make a comparison of the results for constant intensity. These results 
are summarised in table 1. The simulation was performed for 1000 batches each of 
duration N = 128 and with a mean photodetection count rate per sample time of 6 = 10. 
Equations (23) and (28) indicated that the variance of the autocorrelation function 
estimator should be a function of k. Accordingly simulation and theory are compared 
for three distinct values of k (1 ,63 and 127). Over the complete range the comparison 
shows close agreement between theory and simulation, both for the mean value and for 
the variance. The dramatic increase in the error in the autocorrelation function 
estimator for large delays implies that there is little to be gained in seeking to extract 
spectral information from the longest delay channels. In practice the first 70% of the 

Table 1. A comparison of the theoretical predictions for the autocorrelation function and 
periodogram estimators with simulation over 1000 sequences with a constant mean 
photodetection count rate of f i  = 10. 

Estimator Component Mean Variance 

Simulation Theory Simulation Theory 

Autocorrelation 1 99.91 100 33 .8  32.1 
function 

63 99.92 100 35.2 33.3  

Periodogram Average over 9.99 i 0.04 10 1 0 0 ~ 2 i 1 . 2  100.1 
127 98.90 100 1982 2100 

1 t o 6 4  



602 C J Oliver 

autocorrelation function has similar accuracy, but beyond this point the error increases 
rapidly. For the periodogram equations (25) and (30) indicated that the variance should 
be independent of frequency, while equations (24) and (27) show the same for the mean 
value. The periodogram, therefore, which has 64 coefficients, is compared by averaging 
all frequency components of the simulated data. Again the agreement between theory 
and simulation is within the statistical accuracy. Since the variance is independent of 
delay, one should use all the coefficients when determining spectral parameters by 
fitting the periodogram. 

Following this comparison for constant intensity we next make a similar comparison 
for heterodyne detection of Gaussian-Lorentzian light. Simulation over 100 batches 
each of length N = 128 was performed with fi0 = 10 and Es = 0.2. The period ( T ~  = 
27r/w0) was selected to be 10.24 sample times ( T ) ,  and the coherence time ( T ,  = l/r) 10 
sample times. The comparison of the simulated mean value and standard deviation 
with theory for the autocorrelation function estimator, shown in figure 1, demonstrates 
qualitative agreement throughout. Since the signal is only weak (U,< l ) ,  one would 
expect the simple theory for the variance to be reasonable, as is the case. The estimate 
of the mean value of the autocorrelation function after 100 batches have been averaged 
shows a discrepancy which is caused by the statistical fluctuations in the total number of 
photodetections per batch in simulated data. This apparent misnormalisation was the 
justification for introducing different methods of normalising the autocorrelation 
function as discussed in Oliver (1978). This aspect will be treated more deeply later. 

A similar comparison, this time for the periodogram, based on the identical data is 
shown in figure 2. For convenience the vertical scale of the standard deviation has been 
displaced with respect to the mean value. The agreement between the exact theory for 
the mean value (equation ( 3 3 ) )  and simulation is good. Moreover, it should be noted 
that the predicted value of the periodogram away from the peak in the weak-signal limit 
might be expected to be 10.0 from equation (24), whereas the simulated value lies 

Delay 

Figure 1. A comparison of the simulated and theoretical values of the mean and standard 
deviation of the autocorrelation function estimator for heterodyne photodetection of 
narrow-band Gaussian-Lorentzian light. The full curves represent theory. Simulation 
conditions: 100 batches, N = 128, ti, = 10, tis = 0.2, T ~ / T  = 10.24, TJT = 10. 
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Figure 2. A comparison of the simulated and theoretical values of the mean of the 
periodogram under the same conditions as in figure 1. The simulated results for the 
standard deviation are displaced with respect to the mean value. 

around the exact theoretical value of 10.5. Similarly the expected standard deviation 
away from the peak would be expected to be about 10.004 from equation (30) ,  which is 
again consistent with simulation. However, comparison of the standard deviation with 
the mean value for the averaged periodograms of the simulated data over the whole 
spectral range shows that equation (26), which was derived for a Gaussian distribution 
of x ,  also applies to photodetection of light with a Gaussian optical field amplitude 
distribution, even though p ( n )  is not Gaussian. In fact for large oscillator power 
( E ,  >> Zs, CO >> 1) the distribution p ( n )  does tend towards a Gaussian distribution of mean 
CO + Z, and standard deviation [Eo(l + 2ES)l1’*, so that the theory of Jenkins and Watts 
(1968) should indeed apply. This theory is obviously preferable to the simple one, since 
it covers the whole spectrum and should be independent of signal strength. 

4. Normalisation of the spectral estimators 

In the previous section we have derived general expressions for the means and variances 
of the coefficients of the unnormalised autocorrelation function estimator and 
periodogram. Simulation for the autocorrelation function estimator revealed the effect 
of apparent misnormalisation between the simulated autocorrelation function and 
theory. As has been discussed (Oliver 1978), one can choose other possible means of 
normalisation which overcome this problem and give improved accuracy in the extrac- 
tion of spectral parameters by fitting compared with the unnormalised situation. The 
three particular modes of normalisation which were applied in that paper to long data 
sets such that N >> k, N -$ CO, were called true normalisation, self-normalisation and 
far-point normalisation. In this section we shall derive expressions for the mean and 
variance of each of these estimators for both the autocorrelation function and the 
periodogram. We shall assume a wide-band signal, as before, for simplicity. Specific 
comparison with simulation will be made for photodetection of a constant light source 
as before. 
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4.1.  The autocorrelation function 

4.1.1.  Derivation of means and variances. As described in Oliver (1978) ,  the normal- 
ised autocorrelation function r ( k )  can be determined from the unnormalised one from 
the expression 

r ( k )  = R ( ~ ) / ( x ) ~ .  (34 )  

However, in any real experiment one has only estimators for R ( k )  and ( x )  denoted by 
k(k)  and 2 respectively. Different combinations of estimators give rise to the 
differently normalised autocorrelation function estimators. The estimator for true 
normalisation, as in Oliver (1978) ,  is represented by 

?T(k) = k ( k ) / ( x ) 2  (35) 

where ( x )  is the average over many experiments, and R ( k )  is the estimate from a single 
experiment. Of course the denominator in equation (35 )  is not strictly speaking the 
mean value, but can approach it arbitrarily closely as the number of experiments is 
increased. In  any case the discrepancy in this quantity can be reduced well below that in 
k(k) .  From equations (14 ) ,  (16 )  and (17 )  we obtain 

for k 2 N / 2  with an additional term 

+ [ 2 ( N  - 2 k ) / ( N  - k ) 2 ] ( ( x 2 ) / ( x ) 4 )  var x 

for k s ( N  - 1 ) / 2 .  

obtained from a specific experiment so that 
Suppose, however, we replace both R ( k )  and ( x )  in equation (34 )  by the estimates 

where t s ( k )  is the self-normalised autocorrelation function estimator. Expanding the 
numerator and denominator to first order about their mean values, as in Jakeman et a1 
(1971b) and Oliver (1978) ,  we obtain an expression for the bias given by 

( t S ( k ) ) - r ( k )  - - ( 2 / ( X ) 3 ) ( ( R ( k ) .  i ) - ~ ( k ) ( x ) ) + 3 r ( k )  (var i ) / ( x ) ’  (39 )  

(40) 

with a variance given by 

var t s ( k )  =(var I ? ( k ) ) / ( ~ ) ~ + 4 r ~ ( k ) [ l  +(var i ) / ( ~ ) ~ ] - 4 r ( k ) ( k ( k ) .  X ^ ) / ( X ) ~ .  

The unknown terms in equations (39 )  and (40 )  are next evaluated: 

=O 

For wide-band signals such that the last term factorises this reduces to 

var x  ̂ = (var x ) / N .  (42 )  
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# l + k  
= o  

which, for wide-band signals, reduces to 

(I2 ( k )  . 2) = ( x ) ~  + 2(x)(var x ) / N .  (44) 

Substitution from equations (41) and (43) into equations (39) and (40) will give general 
expressions for the bias and variance of the self-normalised estimator. In general this 
estimator may well be neither unbiased nor consistent. However, for wide-band signals 
the general expressions simplify to 

( ~ ~ ( k ) )  - r ( k )  = -N-’(var x ) / ( x ) ~  

var ~ ~ ( k )  - ( N - ~ ) - ’ ( ( X ’ ) * / ( X ) ~ -  1 ) - 4 ~ - ’ ( v a r  x ) / ( x ) ’  

(45) 

for the bias and 

(46) 

for the variance when k 3 N/2 .  For k S ( N  - 1)/2 an additional term 

+ [2(N - 2 k ) / ( N  - / ~ ) ~ ] ( v a r  x ) / ( x ) ’  

must be included. In this case the self-normalised autocorrelation function estimator is 
both consistent and asymptotically unbiased. It is worth noting that, when N > > k k ,  
N + CO, equation (46) reduces to the relevant long-data-set result of Oliver (1978). 

The far-point normalisation technique can also be adopted, as shown in Oliver 
(1978), where the autocorrelation function decays to near its background value. The 
large delay value, R ( N  - l ) ,  would then be approximately given by 

(47) 

Thus we can define a far-point normalised correlation function by subtracting the 
estimator for the far point, i.e. 

(48) 

R (N - 1) = (X)* .  

k F ( k )  = k(k)  - k ( N  - 1) 

where k < N - 1. Hence 

< a ; ( k ) )  = (k  2 ( k ) )  + (li *(N - 1 )) - 2(li ( k )  . a ( N  - 1)). (49) 

Expanding in terms of the original data and accounting for the special cases, the last 
term in equation (49) becomes 

2(x)’ var x 
( R ( k ) . k ( N - 1 ) ) = ( x ) 2 +  

N - k  

for wide-band signals. Hence the variance of this estimator for wide-band signals can 
be shown to be given by 

(51) var kF(k) = ( X ~ ) ~ - ( X ) ~ + ( ( X ’ ) - ~ ( X ) ’ ) ( V ~ ~  x ) / ( ~ - k )  

when k 3 N/2.  For k s ( N -  1)/2 an additional term 

+ [ 2 ( ~  - 2 k ) / ( ~  - var x 
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should be included, Finally this estimator should be divided by the theoretical value of 
R ( N  - l ) ( = ( x ) ’ )  and the resultant added to 1 to make it consistent with the previous 
estimators, so that the complete far-point normalised autocorrelation function estima- 
tor is defined by 

?F(k) =2 dF(k) / (X)2  f 1 = (d ( k )  - k ( N  - l ) ) / ( x ) ’  + 1 .  

(?F(k))= 1 + ( k ( k ) ) - ( d ( N -  1 ) ) ) / ( x ) 2 .  (53) 

(52)  

This estimator has a mean value given by 

For wide-band signals the mean becomes 1 ,  since 

( d ( k ) ) = ( R ( N - l ) } = ( ~ ) ’ .  

Since both d ( k )  and d ( N  - 1 )  are unbiased estimators, as shown by equation (14) ,  the 
far-point normalised estimator is also unbiased. If we next consider the variance we 
obtain 

(54) var t F ( k )  = (x’)’ /(x)~- 1+[((~’)-3(x)’)/(x)~](var x ) / ( N -  k )  

when k 2 N / 2 .  When k s ( N  - 1 ) / 2  an additional term 

+ [ 2 ( N -  2 k ) / ( N  - k)’](var x ) / ( x ) ’  

should be included. From equation (54)  it is apparent that this estimator is not 
consistent, since the variance is largely independent of N .  This follows from the fact 
that the dominant term in the variance corresponds to the variance in g F ( N  - l ) ,  which 
is always made up of only two data samples, x(0) and x ( N  - l ) ,  however large N .  

For the sake of comparison with simulation we are going to consider photodetection 
of constant intensity. Substituting the relevant values of the moments for a Poisson 
distribution, p(n ) ,  these variances become as follows: 

( 5 5 )  var & ( k )  = ( N  - k ) - ’ ( l  + 2 t i ) / f i 2  

when k 5 N / 2  with an additional term 

+ [2(N - 2 k ) / ( N  - k)’ ] ( l  + t i ) / f i ’  

when k S ( N  - 1 ) / 2  for the estimator with true normalisation; 

var & , ( k ) =  ( N - k ) - ’ ( l + 2 f i ) / t i 2 - 4 / N f i  

when k 3 N / 2  with an additional term 

+ [2(N - 2 k ) / ( N  - k ) ’ ] ( l / t i )  

when k C ( N  - 1)/2 for the self-normalised estimator; 

var ? F ( k ) = ( 1 f 2 n ) / f i 2 ~ ( ( N - k ) - ’ ( l  -2f i ) l t i ’  

when k 3 N / 2  with an additional term 

+ [ 2 ( N  - 2 k ) / ( N  - k ) * ] ( l / f i )  

when k s ( N  - 1 ) / 2  for the estimator with far-point normalisation. 

(57)  

4.1.2. Comparison of theory with simulation. As before, the comparison was made for 
the specific case of photodetection of a constant light intensity giving a mean count rate 
per sample time of E = 10. The standard deviations of the different autocorrelation 
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function estimators were computed for 1000 batches of length N = 128 and are 
compared with theory in table 2; they show good agreement. Comparison of the 
standard deviations shows that self-normalisation is consistently the best method and 
far-point normalisation the worst. This latter finding differs from the equivalent one in 
Oliver (1978) because the error is dominated by that in the last delay, which is only 
made up of two samples in this case compared with approximately N for the long data 
set. From the point of view of the accuracy with which the autocorrelation coefficients 
can be determined, therefore, the self-normalised estimator is to be preferred. 

Table 2. A comparison of the predicted standard deviations in the autocorrelation function 
estimator with the results of simulation over 1000 runs having Fl = 10. 

~ 

Normalization Delay Standard deviation 
method ( k )  

Simulation Theory 

True 1 0.058 
63 0,059 

127 0.45 
Self 1 0.014 

63 0,017 
127 0.44 

Far-poin t 1 0.45 
63 0.44 

126 0.33 

0.057 
0,058 
0.46 
0.010 
0,014 
0.45 
0.46 
0.45 
0.34 

4.2. The periodogram 

4.2.1. Derivation of means and variances. When normalising the autocorrelation 
function, the calculated coefficients were divided by the value at very large delay, which 
is the same as that for finite delay with independent samples. The equivalent quantity in 
frequency space would be able to divide the spectral coefficients by that for very high 
frequency, which is the same as that at arbitrary frequency with a wide-band signal. 
From equation (24) we see that this coefficient is equal to var x ( 0 2 ) .  Thus, by analogy 
with the autocorrelation function, we can define a normalised periodogram by 

(58)  

Again, by analogy with the autocorrelation function treatment, we can define the 
periodogram with true normalisation by 

2 
P ( W )  = P(w)/,+,. 

hb) = &4/<,+3 (59) 
where (&) is the ensemble average of the variance over many batches. For wide-band 
signals this normalised estimator will have the value 1, as shown by equation (24). The 
variance of this estimator is given by 

var $=(U) = 1 + (Z%;)-'((x4) -4(x)(x3) - 3 ( x 2 ) 2  + 1 2 ( ~ ) ~ ( x ~ )  - 6 ( ~ ) ~ )  (60) 

for wide-band signals. 
The self-normalised periodogram, on the other hand, could be defined as 

@,(U, = fi(U)/c?: (61) 
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where the periodogram estimator obtained during each batch is normalised by the 
estimate for the variance of x obtained in that batch. Performing a linear expansion of 
both numerator and denominator in equation ( 6 1 )  about their mean values, we obtain 
expressions for the bias and variance of this spectral estimator given by 

and 

The estimator for the variance of x can be defined by 
h 

A 2  2 A2 u , = x  - x  (64) 

so that the unknown quantity ((&:)2) in equations (62) and (63) will be given by 
h A ((sf 12) = ((x 2 ) 2 )  - 2 ( x 2  : i2) + (f4) (65) 

where 

and 

Similarly 

where 

and 

Equations (65)-(71) can next be expanded in terms of diagonal and off-diagonal terms. 
In general the resultant expressions are very complicated, but for the case of wide-band 
signals such that the x's are uncorrelated, equations (65) and (69) simplify to 

( (&: ) ' )=U:  + N - ' ( ( x " ) - ~ ( x ) ( x ~ ) - ~ ( x ~ ) ~ +  1 2 ( x ) ' ( x 2 ) - 6 ( x ) ' )  (72) 

( P ( u ) .  &; )=U:  + N - ' ( ( x ~ ) - ~ ( x ) ( x ~ ) - ~ ( x ' ) ~ +  ~ O ( X ) ' ( X ' ) - ~ ( X ) ~ ) .  (73) 

and 
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Substituting into equation (62) yields an expression 

( i s ( w ) ) - p ( w ) = - 1 / N  (74) 

var i s ( w )  = 1 - 2 / N  (75) 

for the bias of this estimator for wide-band signals, and an expression 

for the variance. Both expressions are independent of the properties of x provided that 
it is a wide-band signal. From equation (74) we see that this estimator is biased to order 
1/N, i.e. asymptotically unbiased, while equation (75) shows that the estimator is still 
inconsistent. If the signal were narrow-band, so that the x’s were correlated, then in 
general the self-normalised estimator would be both inconsistent and biased. 

In order to calculate the effect of far-point normalisation we assume that the spectral 
coefficient at the maximum frequency should be given by U: as already noted. As a first 
step, therefore, we define a far-point normalised estimator by 

FF(w)  = p ( w ) - p ( u m )  (76) 

where w, (the highest-frequency component) = 27r(N - 1)/NT. This estimator is 
unbiased since both f i ( w )  and &w,) are unbiased as previously mentioned. The 
mean-square value of the estimator is given by 

(77) ( P ; ( w ) )  = ( P ’ [ w ) )  - 2(&) . P(w,), + (F2 (wm) )  

where 

x exp[-iO,(l - 4 ) ]  (78) 

Separating diagonal and off-diagonal terms, equation (78) can be reduced, for wide- 
band signals, to 

using the relationships 
v-1 M - 1  .v-1 

1 1 exp[-ifl(j - k ) ]  exp[-ill,(k -411 = 2N 
k = O  q f k  j # q  

= O  # k  
= O  

and 
Y - 1  ’v-1 .v-1 N-1 

1 1 1 1 exp[-ifl(j - k ) ]  exp[-iR,(l - 411 = N’ - 6N. 
1=0 k t j  i f k  q f l  

=I) t j  f k  
=o # /  

= 0 

Combining equations (25) and (79) we obtain, for wide-band signals, 

In order to make this estimator compatible with the other two periodogram estimators 
we next normalise throughout by cr: and also add the theoretical value at wm. Thus 

P,(w,  = ( P ( w )  - +P(w,))/a:.  (81) 
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For wide-band signals this is equal to 1. Under the same conditions the variance, from 
equation (80), is equal to 2 ,  which means that this also is an inconsistent estimator. 

As noted in § 3.1.1 the value of the periodogram away from the peak with 
narrow-band signals is not equal to c:. However, if the definitions of the estimators for 
the different normalisations are applied as given here during simulation, then a 
comparison of the variances should be consistent with the theoretical results given here. 
For initial comparison with simulation we use again photodetection of constant 
intensity light, in which case the variances of the three estimators are as follows: 

var iT (u )  = 1 + l/Nri (82) 

for true normalisation; 

var & ( w )  = 1 - 2 / N  

for self-normalisation; and 

for far-point normalisation. 

4.2.2. Comparison of theory with simulation. The simulation for light of constant 
intensity, ri = 10, was performed on the identical data to those used in the equivalent 
comparison for the autocorrelation function estimators. The results are summarised in 
table 3. Since the variance of the periodogram is not expected to depend on frequency 
for wide-band signals, the variance is averaged over all the coefficients except zero 
frequency. Firstly, it is apparent that the agreement between simulation and theory is 
within experimental error, demonstrating that the process has been truly represented 
by the theory. Secondly, it is shown that, as with the autocorrelation function, the 
self-normalised periodogram has the smallest statistical fluctuations in  the coefficients, 
while far-point normalisation has the largest. 

Table 3. A comparison of the predicted standard deviations in the periodogram estimator 
with the results of simulation over 1000 runs having t? = 10. 

Normalization Standard deviation 
method 

Simulation Theory 

True 1~001*~006  1.004 
Self 0.982* ,010 0,984 
Far-point 1.40* 0.01 1 . 4 1  

4.3. Summary of spectral estimator properties 

A summary of the properties of the different spectral estimators considered in this 
section is presented in table 4. This is based on the assumption that we have wide-band 
signals. For each normalisation technique we give an order of merit (in terms of the 
standard deviation of the estimator coefficients), the bias and the consistency of the 
estimator. We can conclude that, provided a bias of order 1/N is not an over-riding 
limitation, it is advantageous to use the self-normalised estimator in either time-delay 
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Table 4. A comparison of the properties of the differently normalised spectral estimators. 

Estimator Order Normalization Bias Consistency 
of method 
merit 

Autocorrelation 2 True None Consistent 
function 

1 Self Order ( l /N)  Consistent 
3 Far-point Order ( l /N)  Inconsistent 

Periodogram 2 True None Inconsistent 
1 Self Order (1/N) Inconsistent 
3 Far-point None Inconsistent 

or frequency space. If this bias is a limitation, then true normalisation (or no normalis- 
ation) should be adopted. In no situation does far-point normalisation have an 
advantage. 

Since the comparison of table 4 has been applied for the case of wide-band signals, 
we shall conclude the section by a comparison of simulation with theory for heterodyne 
photodetection of narrow-band Gaussian-Lorentzian light. Simulation was performed 
for 3200 batches with each type of normalisation and both spectral estimators. The 
simulation parameters were: batch length N = 128, ii, = 10, ii, = 1, coherence time = 
10 sample times, period = 10 sample times. 

Since this simulation is no longer in the weak-signal limit, the approximate theory 
for the variances of the spectral estimators will no longer apply. We can make a 
meaningful comparison, therefore, solely in terms of the mean values of the estimators. 
The unnormalised forms of these were given in equations (31) and (33) for the 
autocorrelation function and periodogram respectively. On normalising these estima- 
tors we divide them by (x)’ and uf respectively, as shown in equations (34) and (58). 
The value of the former is independent of the signal properties, being given by 

( x ) 2  = (E, + ( 8 5 )  

The latter depends on the signal properties. In the present case we have narrow-band 
Gaussian-Lorentzian light so that 

2 ux = Eo( 1 + 2E,) + E,( 1 + ii,) 
(Jakeman and Pike 1969). The theoretical forms of the two estimators are then 

- 2  2E0E, n s  6 k . O  r ( k )  = 1 + cos(ookT) exp(-lrkTl) + exp(-l2rkTl)+- 
( E o  + E,) ( t i 0  + E,) no+& 

for the autocorrelation function and 

cos R, - e-” 2tiori,e-Y 
ii,(l+ 2 ~ , )  + i i s ( l+  E,) 1 - 2e-’ cos R, + e-2’ 

2 ~ , e - ~ ’  cos - e-’’ 

cos ad - e-’ 
1 - 2e-’ cos ad + e-’” 

+ ( p ( w )  = 1 + 

+ 
E,(I+ 26,) + E,(I+ ii,) 1 - 2e-” cos R +e-4Y 

NG(w)(ti ,+ E,)* 
’ i io ( l+  2EJ + i i , ( l+ ii,) 
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for the periodogram. The different normalisation methods have already been 
described. For true normalisation the individual estimators, defined in equations (35) 
and (59) ,  are divided by the theoretical values of (x)’ and m?,  given in equations (85) and 
(86) respectively, as appropriate. For self-normalisation, defined in equations (38) and 
(61), the estimators are divided by the individual estimators 2’ and 6; as appropriate. 
For far-point normalisation, defined in equations (52) and (81), the last channel of the 
spectral estimator is subtracted from the others, and the theoretical values of this 
channel added, before dividing throughout by the appropriate theoretical normalisa- 
tion factor, (x)* or cf. 

The comparison of the theoretical and simulated autocorrelation functions in figure 
3(a) shows that the averaged true and self-normalised estimators are effectively 
identical and are virtually indistinguishable from the theoretical values. The far-point 
normalised function is significantly different due to the error in the far-point 
coefficients. One would expect this misnormalisation compared with the theory to lead 
to poor statistical accuracy in the determination of spectral parameters by least-squares 
fitting to this estimator. Since this error corresponds to uncertainty in the total counts 
per batch, one would expect it to be reflected only in the zero-frequency component of 
the periodogram. The comparison of theory and simulation for the periodogram in 
figure 3(b)  confirms this, showing that for non-zero frequencies all the estimators are 
very close to the theoretical values. A slight departure of the self-normalised data from 
theory over the peak is observable, but the estimators with true and far-point normal- 
isation are indistinguishable. One might expect, therefore, that fitting the periodogram 
should yield the same statistical accuracy with each normalisation technique. 

o True ond self-normol~sotlon 
1 For-point normallsotlon 
-Theory 

I I I I I I I I 
0 10 20  3c 0 10 20 30 

k I 

Figure 3. A comparison of the different normalisation techniques for ( a )  the autocor- 
relation function estimator and ( b )  the periodogram. The results are for heterodyne 
photodetection of narrow-band Gaussian-Lorentzian light under the following conditions: 
3200 batches, N = 128, E, = 10, tis = 1, TJT = 10, T ~ / T  = 10. The full curves represent 
theory. 

5. Relative accuracy in the extraction of spectral parameters by fitting 

So far the analysis has been restricted to a discussion of the relative errors in the 
coefficients of the different estimators. A sometimes more useful comparison would be 
couched in terms of the accuracy with which spectral parameters can be determined 
from each of the estimators. In particular we wish to  establish: (i) whether one achieves 
greater accuracy using the periodogram or the autocorrelation function estimator; (ii) 
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which normalisation technique gives the best accuracy in each case. The discussion in 
0 3 established the analytic equivalence of the unnormalised periodogram and auto- 
correlation function estimators, which suggests that the two methods should give 
equivalent accuracy, modified only by the different weightings given to the parameters 
when fitting in their frequency or time space. In Oliver (1978) it was demonstrated that 
for heterodyne detection each normalisation technique, using autocorrelation functions 
from long data batches, gave the same accuracy. However, in the previous section we 
have shown that the variance of the far-point estimator for the correlation function is 
much greater than the others, which one would expect to change the previous 
conclusion. 

The various normalisation techniques for the two spectral estimators were therefore 
compared by simulation followed by fitting to the analytic forms given in equations (3 1) 
and (33) above. The statistical accuracy in a single run was not adequate for fitting, so a 
series of 16 independent batches were simulated; the normalised spectral estimators 
were calculated and the results averaged and then fitted. The parameters used in the 
simulation were: 200 sets of 16 batches of length N = 128 samples, ii, = 10, f i , = 1, 
coherence time 7, = 10 sample times, period 7, = 10 sample times. The results are 
summarised in table 5 .  

Table 5. The mean values and standard deviations of the spectral parameters for coherence 
time ( T ~ )  and period ( r p )  for the two spectral estimators and the different normalisation 
methods. 

Spectral Normalization T~ A 7, TP A T P  
estimator method 

Correlation function True 10.4 1.9 9.99 0.22 
Self 10.4 2 . 1  9.99 0.21 
Far-point 10.5 7.1 9.96 0.23 

Periodogram True 10.6 2.3 10.00 0.24 
Self 10.2 2.2 10.00 0.24 
Far-point 10.6 2 . 5  10.01 0.25 

Within experimental error the standard deviations in the estimated period i, are the 
same. However the standard deviation in the coherence time i, determined from the 
far-point normalised autocorrelation function is significantly greater than the rest, 
which appear similar to each other. With this exception, therefore, all the possibilities 
yield the same statistical accuracy in the spectral parameters. From this point, there- 
fore, we shall only consider the self-normalised spectral estimators as representing the 
five best methods. While this choice is not significant for heterodyne detection, it has 
already been demonstrated (Oliver 1978) that this is the best autocorrelation function 
estimator to be used in either direct or homodyne detection. 

6. Long data sets 

As we have already shown, the periodogram is an inconsistent spectral estimator. Thus 
if we wish to achieve a resolution of 1 part in N, the data batch should be of length N. If 
one has long data sets of M(>>N) samples, one can achieve improved accuracy with the 
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same resolution by various methods which are basically equivalent to averaging over 
M / N  independent batches each of length N .  With the autocorrelation function, 
however, the estimator can be constructed for N delays but with M samples in the usual 
manner as analysed in Oliver (1978).  It is obviously important to establish whether 
there are any significant differences in the accuracy that can be achieved in the 
determination of the spectral parameters depending on whether one uses a single long 
data set (length M )  and merely calculates N delay coefficients, or averages over M / N  
independent autocorrelation function estimators from batches of length N .  

If we consider first the autocorrelation function estimators, then, averaging over 
M / N  independent batches, the variance of the estimator can be shown from equation 
(46) to be given by 

(89)  var & ( k )  = [ N / M ( N  - ~ ) ] ( ( x ’ ) * / ( x ) ~ -  1) -4(var x ) / M ( x ) ~  

for k 2 N / 2  with an additional term 

+ [ 2 N ( N  - 2 k ) / M ( N  - k)’](var x)/(x)’ 

for k s ( N  - 1 ) / 2 .  The equivalent result for the long data set was given in Oliver (1978) 
as 

var Fs( k )  = M-’ - x 2 ) 2  - 1 -2(var x ) / M ( x > 2 .  (90)  

This is identical to equation (89)  when N >> k .  For heterodyne detection in the 
weak-signal limit, equation (89)  yields 

(91)  

C X ) 4  1 

var t s ( k )  = [ N / M ( N  - k)](2f io  + l ) / f i ;  -4/Mfi0 

for k 2 N / 2  with an additional term 

+ [ 2 N ( N  - 2 k ) / M ( N  - k ) ’ ] ( l / f i 0 )  

for k s ( N  - 1)/2.  Similarly the single long data set would give 

var & ( k )  = M-’(2fi0 + l)/fi? - 2/Mfi0. (92)  
For the periodogram, averaging over M / N  batches of wide-band signals would be 

expected to give a variance a factor M / N  smaller, so that, from equation (75), we obtain 

(93)  
However, for arbitrary signals it has been shown (equation (26) )  that the variance is best 
represented by the square of the spectrum. Thus the variance of the self-normalised 
periodogram would be expected to be given by 

var M w )  = N / M  - 2 /M.  

varbs(w) = ~ ” ( P ( ” 2  (94)  
where p(o) is the exact normalised spectrum for the truncated batch. 

The theoretical predictions of equations (91) ,  (92)  and (94)  are compared with 
simulation under the same conditions as applied in table 5, and the results are given in 
table 6. The agreement between simulation and theory for the periodogram is close, 
showing that the error is dominated by that in the periodogram with true normalisation. 
This is to be expected, since the correction on self-normalisation is of order 1 / N  smaller 
than the first term derived for the unnormalised periodogram. The agreement between 
theory and simulation for the autocorrelation function estimators is worse than that 
demonstrated in figure 1 ,  resulting from the high value of 6, (= 1 )  used for the present 
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Table 6. A comparison of the theoretical and simulated standard deviations for the 
periodogram and autocorrelation function estimator coefficients. The effects of averaging 
over short batches and taking long data sets are included. 

Periodogram Bs (2nlINT) 

1 Averaged batches k Averaged batches Long data set 

Autocorrelation function ?,(kT) 

Theory Simulation Theory Simulation Theory Simulation 

1 0.25 0.23 1 0,006 0.011 0.015 0,034 
13 1.46 1.23 63 0.009 0.012 0,015 0.026 
63 0.097 0.101 127 0.19 0.18 0,015 0.028 

simulation. This leads to much greater correlation between neighbouring samples than 
in the weak-signal case, which in turn results in a discrepancy between the simple model 
and a full theory. If we consider the theoretical predictions for the standard deviation of 
the self-normalised autocorrelation function, which would be applicable only in the 
weak-signal limit, then it is apparent that using the long data set gives slightly better 
accuracy. Where signal statistics dominate, the simulation comparison demonstrates 
that greater accuracy is achieved by averaging over many short batches for values of k 
less than 90 than by using the long data set. One might therefore expect an advantage to 
accrue from using the former technique when extracting the value of spectral 
parameters by fitting procedures in this situation. 

The most significant comparison between a long data set and the average over many 
short batches lies in the accuracy with which spectral parameters can be obtained in a 
given situation. In order to make such a comparison, therefore, we again adopt 
simulation of heterodyne photodetection of Gaussian-Lorentzian light. With the 
exception of the coherence time, the conditions are identical to those in tables 5 and 6;  
i.e. a total of 2048 samples either in one set or in batches of 128, Eo = 10, E ,  = 1, and 
period = 10 sample times. The ratio of the coherence time to the sample time (rc/T) is 
then varied over values of 5 ,  10, 20, 40, 80 and 160; the periodogram and autocor- 
relation function averaged over 16 batches of length 128 and the autocorrelation 
function containing 128 delays made up of 2048 samples are constructed, and each 
spectral estimator fitted to the relevant theoretical form. The results are illustrated in 
figure 4. While it is difficult to draw any hard and fast conclusions, it is apparent that 
averaging over short batches offers an improvement of about 40% compared with the 
long data set for both period and coherence time under the conditions chosen. 
However, in all cases the mean values of the coherence time determined by fitting when 
the coherence time is comparable with the number of delay coefficients (128) in the 
autocorrelation function are significantly reduced compared with the input parameters. 
It appears that if one has a data batch of length N, or N autocorrelation coefficients for a 
long data set, then the coherence time will be underestimated if it exceeds about NT/2. 
Apart from this limitation, each method shows a similar dependence of the accuracy on 
the coherence time. Over the range 5 s rc/T S 40 the results for the long-data-set 
autocorrelation function are in good agreement with those in the previous paper (Oliver 
1978). Many of the conclusions of that paper regarding choice of operating conditions 
can be expected to apply when short data batches are averaged as well as when long data 
sets are taken, since the dependence on coherence time is similar. 
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7. Conclusions 

The equivalence of the periodogram and autocorrelation function estimator for short 
batches of data has been demonstrated both theoretically and by computer simulation 
followed by fitting to determine spectral parameters. There is therefore no theoretical 
advantage to be gained when processing batch data from operating in either frequency 
or  time domains. Such advantages that do  occur will result from an engineering 
comparison of the departures from exact operation in either domain, e.g. the question 
of linearity or many-bit operation. 

Secondly, it has been shown that there is no significant advantage either from 
consideration of distortion or statistical accuracy in using long data sets compared with 
averaging over several short batches of data. Indeed the latter method seems to offer a 
slight advantage where strong signals are encountered. Thus a batch-processing 
Fourier transform would off er advantages over a continuous autocorrelation function 
method (-40%) which may compensate for possibly reduced efficiency of such a system 
unless it is multiplexed. 

Thus any comparison between implementations in the two domains must be in  terms 
of engineering constraints and limitations. 
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